Approximation of images by group invariant subspaces

Eugenio Hernández
Universidad Autónoma de Madrid
Joint work with D. Barbieri, C. Cabrelli and U. Molter

Guido Weiss Memorial Conference On Harmonic Analysis
Washington University in Saint Louis
October 8 and 9, 2022
Acknowledgements

Geometric Harmonic Analysis and Interdisciplinary Applications
European Union Horizon 2020
Grant Agreement No 777822

PID-105599GB-I00
Let $\mathcal{F} = \{f_1, \ldots, f_m\} \subset \ell_2(\mathbb{Z}_d \times \mathbb{Z}_d)$ be a dataset of $d \times d$ digital images.
Let $\mathcal{F} = \{f_1, \ldots, f_m\} \subset \ell_2(\mathbb{Z}_d \times \mathbb{Z}_d)$ be a dataset of $d \times d$ digital images.

Let $\Lambda \subset \mathbb{Z}_d \times \mathbb{Z}_d$ be a sublattice $\Lambda = \mathbb{Z}_p \times \mathbb{Z}_p \ (p/d)$, and let $r = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

For $\psi \in \ell_2(\mathbb{Z}_d \times \mathbb{Z}_d)$, $n = (n_1, n_2) \in \mathbb{Z}_d \times \mathbb{Z}_d$, $\lambda = (\lambda_1, \lambda_2) \in \Lambda$, let

$$ T(\lambda)f(n) = f(n_1 - \lambda_1, n_2 - \lambda_2), \quad R\psi(n) = \psi(rn^t). $$
Let $\mathcal{F} = \{ f_1, \ldots, f_m \} \subset \ell_2(\mathbb{Z}_d \times \mathbb{Z}_d)$ be a dataset of $d \times d$ digital images.

Let $\Lambda \subset \mathbb{Z}_d \times \mathbb{Z}_d$ be a sublattice $\Lambda = \mathbb{Z}_p \times \mathbb{Z}_p \ (p/d)$, and let $r = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

For $\psi \in \ell_2(\mathbb{Z}_d \times \mathbb{Z}_d)$, $n = (n_1, n_2) \in \mathbb{Z}_d \times \mathbb{Z}_d$, $\lambda = (\lambda_1, \lambda_2) \in \Lambda$, let

$$T(\lambda)f(n) = f(n_1 - \lambda_1, n_2 - \lambda_2), \quad R\psi(n) = \psi(rn^t).$$

Let $V \subset \ell_2(\mathbb{Z}_d \times \mathbb{Z}_d)$ linear subspace. The error of approximation of \mathcal{F} by V is:

$$E[\mathcal{F}, V] = \sum_{j=1}^{m} \| f_j - P_V f_j \|^2.$$

For $\kappa \in \mathbb{N}$, let $\Psi = \{ \psi_j \}_{j=1}^{\kappa} \subset \ell_2(\mathbb{Z}_d \times \mathbb{Z}_d)$. Let $V(\Psi)$ be the invariant subspace of $\ell_2(\mathbb{Z}_d \times \mathbb{Z}_d)$ generated by Ψ:

$$V(\Psi) = \text{span}\left\{ T(\lambda)R^g\psi_j : \lambda \in \Lambda, g \in \{0, 1, 2, 3\}, j \in \{1, \ldots, \kappa\} \right\}.$$
Goal: for $\kappa \in \mathbb{N}$, find generators $\Phi = \{\phi_j\}_{j=1}^\kappa \subset \ell_2(\mathbb{Z}_d \times \mathbb{Z}_d)$ such that

$$\Phi = \arg \min \mathcal{E}[\mathcal{F}, V(\Psi)]$$

where the minima is taken over all $V(\Psi)$ with at most κ generators. Moreover,

$$\left\{ T(\lambda)R^g \phi_j : \lambda \in \Lambda, g \in \{0, 1, 2, 3\}, j \in \{1, \ldots, \kappa\} \right\}$$

is a Parseval frame for $V(\Phi)$, that is

$$\mathbb{P}_{V(\Phi)} f = \sum_{\lambda \in \Lambda} \sum_{g=0}^3 \sum_{j=1}^\kappa \langle f, T(\lambda)R^g \phi_j \rangle T(\lambda)R^g \phi_j$$

is an orthogonal projection onto $V(\Phi)$.
Techniques

- Translational structure on a lattice: Fourier analysis.
- Rotations: the group of symmetries $\Lambda \rtimes \{1, R, R^2, R^3\}$ is not abelian.
- Quadratic error functional: explicit solution using SVD.
The how and the why

Techniques

- Translational structure on a lattice: Fourier analysis.
- Rotations: the group of symmetries $\Lambda \rtimes \{1, R, R^2, R^3\}$ is not abelian.
- Quadratic error functional: explicit solution using SVD.

Motivation

- Reduce the side of the original image using the PF coefficients.
- Introduce non abelian symmetries.
The how and the why

Techniques

- Translational structure on a lattice: Fourier analysis.
- Rotations: the group of symmetries $\Lambda \rtimes \{1, R, R^2, R^3\}$ is not abelian.
- Quadratic error functional: explicit solution using SVD.

Motivation

- Reduce the side of the original image using the PF coefficients.
- Introduce non abelian symmetries.

General setting

- Functional data, defined on an LCA group.
- Symmetry: a semidirect product of a lattice of translates and a discrete group of automorphisms.
Definition of group invariance

Let \mathbb{R} be an LCA group, let $\Lambda \subset \mathbb{R}$ be a lattice subgroup, and let $G \subset \text{Aut}(\mathbb{R})$ be a countable group such that $g\Lambda = \Lambda$ for all $g \in G$.

\[T(\lambda)f(x) = f(x - \lambda), \quad R(g)f(x) = f(g^{-1}x), \] for $f \in L^2(\mathbb{R})$.

Observe that $R(g)T(\lambda) = T(g\lambda)R(g)$.

Therefore, if we consider $\Gamma = \Lambda \rtimes G = \{ (\lambda, g) : \lambda \in \Lambda, g \in G \}$, with composition law $((\lambda, g)) \cdot ((\lambda', g')) = (g\lambda' + \lambda, gg')$, Γ acts unitarily on $L^2(\mathbb{R})$ by $T(\lambda)R(g)$.

A closed subspace $V \subset L^2(\mathbb{R})$ is Γ-invariant if $T(\lambda)R(g)V \subset V$ for all $\lambda \in \Lambda$, $g \in G$.

In this case, there is always a countable $\Psi = \{ \psi_j \}_{j \in \mathbb{N}}$ such that $V = \text{span} \{ T(\lambda)R(g)\psi_j : \lambda \in \Lambda, g \in G, j \in \mathbb{N} \}$.\[^1 \text{If } \mathbb{R} = \mathbb{R}^d, \text{ that is } \Lambda = AZ^d \subset \mathbb{R}^d \text{ for } A \in GL_d(\mathbb{R}). \]
Definition of group invariance

Let \mathbb{R} be an LCA group, let $\Lambda \subset \mathbb{R}$ be a lattice subgroup1, and let $G \subset \text{Aut}(\mathbb{R})$ be a countable group such that $g\Lambda = \Lambda$ for all $g \in G$. Λ and G act unitarily on $L^2(\mathbb{R})$ by means of the operators

$$T(\lambda)f(x) = f(x - \lambda), \quad R(g)f(x) = f(g^{-1}x), \quad \text{for } f \in L^2(\mathbb{R}).$$

1If $\mathbb{R} = \mathbb{R}^d$, that is $\Lambda = AZ^d \subset \mathbb{R}^d$ for $A \in GL_d(\mathbb{R})$.
Definition of group invariance

Let \mathbb{R} be an LCA group, let $\Lambda \subset \mathbb{R}$ be a lattice subgroup\(^1\), and let $G \subset \text{Aut}(\mathbb{R})$ be a countable group such that $g\Lambda = \Lambda$ for all $g \in G$. \Lambda and G act unitarily on $L^2(\mathbb{R})$ by means of the operators

$$T(\lambda)f(x) = f(x - \lambda), \quad R(g)f(x) = f(g^{-1}x), \quad \text{for } f \in L^2(\mathbb{R}).$$

Observe that $R(g)T(\lambda) = T(g\lambda)R(g)$. Therefore, if we consider

$$\Gamma = \Lambda \rtimes G = \{(\lambda, g) : \lambda \in \Lambda, g \in G\},$$

with composition law

$$(\lambda, g) \cdot (\lambda', g') = (g\lambda' + \lambda, gg'),$$

Γ acts unitarily on $L^2(\mathbb{R})$ by $T(\lambda)R(g)$.

\(^1\)If $\mathbb{R} = \mathbb{R}^d$, that is $\Lambda = AZ^d \subset \mathbb{R}^d$ for $A \in \text{GL}_d(\mathbb{R})$.

Title: Definition of group invariance

Author: Eugenio Hernández

Date: 09/10/2022
Definition of group invariance

Let \mathbf{R} be an LCA group, let $\Lambda \subset \mathbf{R}$ be a lattice subgroup\(^1\), and let $G \subset \text{Aut} (\mathbf{R})$ be a countable group such that $g\Lambda = \Lambda$ for all $g \in G$. Λ and G act unitarily on $L^2(\mathbf{R})$ by means of the operators

$$T(\lambda)f(x) = f(x - \lambda), \quad R(g)f(x) = f(g^{-1}x),$$

for $f \in L^2(\mathbf{R})$.

Observe that $R(g)T(\lambda) = T(g\lambda)R(g)$. Therefore, if we consider $\Gamma = \Lambda \rtimes G = \{(\lambda, g) : \lambda \in \Lambda, g \in G\}$, with composition law

$$(\lambda, g) \cdot (\lambda', g') = (g\lambda' + \lambda, gg'),$$

Γ acts unitarily on $L^2(\mathbf{R})$ by $T(\lambda)R(g)$.

A closed subspace $\mathcal{V} \subset L^2(\mathbf{R})$ is Γ-invariant if

$$T(\lambda)R(g)\mathcal{V} \subset \mathcal{V} \quad \forall \lambda \in \Lambda, \ g \in G.$$

In this case, there is always a countable $\Psi = \{\psi_j\}_{j \in \mathbb{N}}$ such that

$$\mathcal{V} = \text{span}\left\{ T(\lambda)R(g)\psi_j : \lambda \in \Lambda, g \in G, j \in \mathbb{N} \right\}^{L^2(\mathbf{R})}.$$

\(^1\)If $\mathbf{R} = \mathbb{R}^d$, that is $\Lambda = A\mathbb{Z}^d \subset \mathbb{R}^d$ for $A \in \text{GL}_d(\mathbb{R})$.

Eugenio Hernández
Approximation of images
09/10/2022
First Part

Let \(b = (1, 1) \) and \(G = \{(b^j, k) : j \in \mathbb{Z}, k \in \mathbb{Z}^2\} \).

We introduce the operation (multiplication) on \(G \):

\[
(1) \quad (b^j, m)(b^k, n) = (b^{j+k}, n + b^j \cdot m).
\]

Then \(G \), with this operation, is a group. For example,

\[
(b^j, k)^{-1} = (b^{-j}, -b^j \cdot k). \text{ This operation (1) is consistent}
\]
\((b, k)^{-1} = (b^{-1}, -b^{-1}k)\). This operation (1) is consistent with the operation on points of \(\mathcal{R}^2\) that maps \(x \in \mathcal{R}^2\) into \(b^d (x + k) \in \mathcal{R}^2\). We introduce the representation \(\pi\) of \(G\), acting on \(L^2(\mathcal{R}^2)\) defined by

\[\pi(b, k)f(x) = \int f((b, k)^{-1}x) = \int f(b^{-1}x - k)\]

for \(f \in L^2(\mathcal{R}^2)\). It is easily seen that this is a unitary (operator) representation of \(G\) acting on \(L^2(\mathcal{R}^2)\).
First Interlude: The pinwheel tiling

Cruido’s Figure. The shaded region indicates what I explained for defining V_0 and V.
Best approximation problem

Let $\mathcal{F} = \{f_1, \ldots, f_m\} \subset L^2(\mathbb{R})$ be functional data, and let $\kappa \in \mathbb{N}$.

Goal: find

$$\Phi = \arg \min_{\Psi} \sum_{j=1}^{m} \| f_j - \mathbb{P}_S(\Psi) f_j \|_{L^2(\mathbb{R})}^2$$

over all $\Psi = \{\psi_j\}_{j=1}^{\kappa} \subset L^2(\mathbb{R})$, where

$$S_\Gamma(\Psi) = \text{span} \left\{ T(\lambda)R(g)\psi_j : \lambda \in \Lambda, g \in G, j = 1, \ldots, \kappa \right\}^{L^2(\mathbb{R})}.$$

Result: an explicit construction of $\Phi \subset S_\Gamma(\mathcal{F})$ whose Γ-orbits form a Parseval frame, i.e. for $f \in L^2(\mathbb{R})$

$$\mathbb{P}_{S_\Gamma(\Phi)} f = \sum_{\lambda \in \Lambda} \sum_{g \in G} \sum_{j=1}^{\kappa} \langle f, T(\lambda)R(g)\phi_j \rangle_{L^2(\mathbb{R})} T(\lambda)R(g)\phi_j.$$
\(\hat{\mathbb{R}} \) denotes the dual group of \(\mathbb{R} \). Duality is written as
\[
\langle \xi, x \rangle = e^{2\pi i \xi \cdot x}, \quad \xi \in \hat{\mathbb{R}}, \ x \in \mathbb{R}.
\]

The annihilator\(^2\) lattice of \(\Lambda \) is
\[
\Lambda^\perp = \{ \ell \in \hat{\mathbb{R}} : \langle \ell, k \rangle = 1 \ \forall k \in \Lambda \}.
\]

The action of \(G \) on \(\mathbb{R} \) induces an action of \(G \) on \(\hat{\mathbb{R}} \) by duality:
\[
\langle g \ast \xi, x \rangle = \langle \xi, gx \rangle \quad \xi \in \hat{\mathbb{R}}, \ x \in \mathbb{R}.
\]

\(^2\)If \(\Lambda = A\mathbb{Z}^d \) in \(\mathbb{R}^d \), then \(\Lambda^\perp = (A^t)^{-1}\mathbb{Z}^d \).
\(\hat{\mathbb{R}} \) denotes de dual group of \(\mathbb{R} \). Duality is written as

\[
\langle \xi, x \rangle = e^{2\pi i \xi \cdot x}, \quad \xi \in \hat{\mathbb{R}}, \ x \in \mathbb{R}.
\]

The annihilator\(^2\) lattice of \(\Lambda \) is

\[
\Lambda^\perp = \{ \ell \in \hat{\mathbb{R}} : \langle \ell, k \rangle = 1 \ \forall k \in \Lambda \}.
\]

The action of \(G \) on \(\mathbb{R} \) induces an action of \(G \) on \(\hat{\mathbb{R}} \) by duality:

\[
\langle g \ast \xi, x \rangle = \langle \xi, gx \rangle \quad \xi \in \hat{\mathbb{R}}, \ x \in \mathbb{R}.
\]

Let \(\Omega \subset \hat{\mathbb{R}} \) be such that \(|\Omega \cap (\Omega + s)| = 0 \) for \(0 \neq s \in \Lambda^\perp \), and

\[
|\hat{\mathbb{R}} \setminus \bigcup_{s \in \Lambda^\perp} \Omega + s| = 0.
\]

\(^2\)If \(\Lambda = A\mathbb{Z}^d \) in \(\mathbb{R}^d \), then \(\Lambda^\perp = (A^t)^{-1}\mathbb{Z}^d \).
The map $\mathcal{T} : L^2(\mathbb{R}) \to L^2(\Omega, \ell_2(\Lambda^\perp))$ is the surjective isometry

$$\mathcal{T}[f](\omega) = \{\hat{f}(\omega + s)\}_{s \in \Lambda^\perp}. $$

Observe that

$$\|\mathcal{T}[f](\omega)\|_{\ell_2(\Lambda^\perp)}^2 = \sum_{s \in \Lambda^\perp} |\hat{f}(\omega + s)|^2 := [f, f](\omega) \text{ (Bracket)}. $$
The map $\mathcal{T} : L^2(\mathbb{R}) \rightarrow L^2(\Omega, \ell_2(\Lambda^\perp))$ is the surjective isometry

$$\mathcal{T}[f](\omega) = \{\hat{f}(\omega + s)\}_{s \in \Lambda^\perp}.$$

Observe that

$$\|\mathcal{T}[f](\omega)\|_{\ell_2(\Lambda^\perp)}^2 = \sum_{s \in \Lambda^\perp} |\hat{f}(\omega + s)|^2 := [f, f](\omega) \quad \text{(Bracket)}.$$

If \mathcal{V} is Λ-invariant, there exists $\Psi = \{\psi_j\}_{j \in \mathbb{N}} \subset L^2(\mathbb{R})$ such that

$$\mathcal{V} = \text{span}\{\mathcal{T}(\lambda)\psi_j : \lambda \in \Lambda, j \in \mathbb{N}\}^{L^2(\mathbb{R})}.$$
The map $\mathcal{T} : L^2(\mathbb{R}) \to L^2(\Omega, \ell_2(\Lambda^\perp))$ is the surjective isometry

$$\mathcal{T}[f](\omega) = \{\hat{f}(\omega + s)\}_{s \in \Lambda^\perp}.$$

Observe that

$$\|\mathcal{T}[f](\omega)\|_{\ell_2(\Lambda^\perp)}^2 = \sum_{s \in \Lambda^\perp} |\hat{f}(\omega + s)|^2 := [f, f](\omega) \text{ (Bracket)}.$$

If \mathcal{V} is Λ-invariant, there exists $\Psi = \{\psi_j\}_{j \in \mathbb{N}} \subset L^2(\mathbb{R})$ such that

$$\mathcal{V} = \text{span}\{\mathcal{T}(\lambda)\psi_j : \lambda \in \Lambda, j \in \mathbb{N}\}L^2(\mathbb{R}).$$

The range function $J_\mathcal{V}$ of \mathcal{V} is the measurable map

$$J_\mathcal{V} : \Omega \to \{\text{closed subspaces of } \ell_2(\Lambda^\perp)\}$$

given by

$$J_\mathcal{V}(\omega) = \text{span}\{\mathcal{T}[\psi_j](\omega) : j \in \mathbb{N}\}_{\ell_2(\Lambda^\perp)}.$$
We know that there exists a measurable $\hat{\mathbb{R}}/\Lambda^\perp \approx \Omega \subset \hat{\mathbb{R}}$. For the approximation problem we need more: the action of $\Lambda^\perp \rtimes G$ on $\hat{\mathbb{R}}$ must have a fundamental domain $\Omega_0 \subset \mathbb{R}$:

$$\begin{align*}
|\Omega_0 \cap g \ast \Omega_0| &\quad g \neq e \quad 0 \\
|\Omega \setminus \bigcup_{g \in G} g \ast \Omega_0| &\quad = \quad 0.
\end{align*}$$

When $b \mathbb{R}$ is connected and G acts faithfully on $b \mathbb{R}$, such a fundamental domain exists if and only if G is finite.
We know that there exists a measurable $\hat{\mathbb{R}}/\Lambda^\perp \approx \Omega \subset \hat{\mathbb{R}}$. For the approximation problem we need more: the action of $\Lambda^\perp \rtimes G$ on $\hat{\mathbb{R}}$ must have a fundamental domain $\Omega_0 \subset \mathbb{R}$:

\[
\begin{cases}
|\Omega_0 \cap g \ast \Omega_0| & g \neq e \quad 0 \\
|\Omega \setminus \bigcup_{g \in G} g \ast \Omega_0| & = 0.
\end{cases}
\]

When $\hat{\mathbb{R}}$ is connected and G acts faithfully on $\hat{\mathbb{R}}$, such a fundamental domain exists if and only if G is finite.
Construction of the minimizing family $\Phi = \{\phi_j\}_{j=1}^{\kappa}$ for

$$E[\Psi] = \sum_{j=1}^{m} \left\| f_j - \mathbb{P}_{S_\Gamma}(\psi) f_j \right\|_{L^2(\mathbb{R}^d)}^2.$$
Construction of the minimizing family $\Phi = \{\phi_j\}_{j=1}^\kappa$ for

$$E[\Psi] = \sum_{j=1}^m \|f_j - \mathbb{P}_{S_\Gamma(\Psi)} f_j\|^2_{L^2(\mathbb{R}^d)}.$$

Step I: equivalent expression for $E[\Psi]$:

$$E[\Psi] = \int_{\Omega_0} \sum_{j=1}^m \sum_{g \in G} \|\mathcal{T}[R(g)f_j](\omega) - \mathbb{P}_{\mathcal{J}(\omega)} \mathcal{T}[R(g)f_j](\omega)\|^2_{\ell_2(\Lambda^\perp)} d\omega$$

where $\mathcal{J}(\omega) = \text{span}\{\mathcal{T}[R(g)\psi_j](\omega) : j = 1, \ldots, \kappa, g \in G\}$ is the range function of $S_\Gamma(\Psi)$.
Approximation by Γ-invariant spaces

Step II: For any $\omega \in \Omega_0$ consider the data

$$a_{(j,g)}(\omega) = \mathcal{T}[R(g)f_j](\omega) \in \ell_2(\Lambda^\perp) \quad j \in \{1, \ldots, m\}, g \in G.$$

Use SVD for the matrix $A(\omega)$ whose columns are the vectors $a_{(j,g)}(\omega)$ to find

$$\{u_{(j,g)}(\omega) : j \in \{1, \ldots, \tau\}, g \in G\}$$

that minimizes each term of the integrand in Step I (Eckart-Young).
Step II: For any $\omega \in \Omega_0$ consider the data

$$a_{(j,g)}(\omega) = \mathcal{T}[R(g)f_j](\omega) \in \ell_2(\Lambda^\perp) \quad j \in \{1, \ldots, m\}, g \in G.$$

Use SVD for the matrix $A(\omega)$ whose columns are the vectors $a_{(j,g)}(\omega)$ to find

$$\{u_{(j,g)}(\omega) : j \in \{1, \ldots, \tau\}, g \in G\}$$

that minimizes each term of the integrand in Step I (Eckart-Young).

Step III: extend $\{u_{(i,g)}(\omega) : j \in \{1, \ldots, \kappa\}, g \in G\}$ from Ω_0 to the whole $\Omega \approx \mathbb{R}/\Lambda^\perp$ by invariance, obtaining $\{h_{(i,g)}\} \in L^2(\Omega, \ell_2(\Delta^\perp))$.
Step II: For any $\omega \in \Omega_0$ consider the data

$$a_{(j,g)}(\omega) = T[R(g)f_j](\omega) \in \ell_2(\Lambda^\perp) \quad j \in \{1, \ldots, m\}, g \in G.$$

Use SVD for the matrix $A(\omega)$ whose columns are the vectors $a_{(j,g)}(\omega)$ to find

$$\{u_{(j,g)}(\omega) : j \in \{1, \ldots, \tau\}, g \in G\}$$

that minimizes each term of the integrand in Step I (Eckart-Young).

Step III: extend $\{u_{(i,g)}(\omega) : j \in \{1, \ldots, \kappa\}, g \in G\}$ from Ω_0 to the whole $\Omega \approx \mathbb{R}/\Lambda^\perp$ by invariance, obtaining $\{h_{(i,g)}\} \in L^2(\Omega, \ell_2(\Delta^\perp))$.

Step IV: pull back the solution with T, to

$$\phi_j = T^{-1}[h_{(j,e)}] \quad \text{and} \quad \phi_{j,g} = R_g \psi_{i,e}\psi \quad j \in \{1, \ldots, \kappa\}, g \in G.$$
TO: Faculty, Staff & Graduate Students

FROM: Ann Podleski & Guido Weiss

SUBJECT: Softball Game

The COMPLEX OUTFIELD (the grad students' co-ed softball team) has challenged the DECREPITS (the faculty no-ed softball (?) team) to a game.

The DECREPITS have accepted the challenge. The game will be held in Ozu Field at 4:30 p.m., Monday, May 12. All of you be there.

05-07-80
jsd
Dataset: 2000 natural images, grayscale (8 bits), 345×345 pixels.

Figure: Left: lattice of translates (23×23 points). Right: annihilator lattice in the Fourier domain (15×15 points).
Numerics on image-net.org 2017 dataset

Distribution on the dataset of average error by pixel $\Delta_j = \frac{\|f_j - \mathbb{P}_{S(\Phi)} f_j\|_d}{256 \ast d}$ for 8, 14 and 19 generators (reduction of the dimension to $\leq \frac{1}{7}, \frac{1}{4}$ and $\frac{1}{3}$).
Generators in the Fourier domain

Figure: Left: generator 1 (modulus). Right: superposition of its four rotates.
Generators in the Fourier domain

Figure: Left: generator 2 (modulus). Right: superposition of its four rotates.
Generators in the Fourier domain

Figure: Left: generator 3 (modulus). Right: superposition of its four rotates.
Generators in the Fourier domain

Figure: Left: generator 4 (modulus). Right: superposition of its four rotates.
Generators in the image domain

Figure: The first 6 generators.
Approximation Examples (Average error)

Figure: $K = 8$ generators (dimension $\leq \frac{1}{7}$), Error per pixel $= 6.1\%$.
Figure: $K = 14$ generators (dimension $\leq \frac{1}{4}$), Error per pixel = 5.2%.

Approximation Examples (Average error)
Approximation Examples (Average error)

Figure: $K = 19$ generators (dimension $\leq \frac{1}{3}$), Error per pixel = 4.6%.
Approximation Examples (High error)

Figure: $K = 8$ generators (dimension $\leq \frac{1}{7}$), Error per pixel = 9.5%.
Figure: $K = 14$ generators (dimension $\leq \frac{1}{4}$), Error per pixel = 6.9%.
Figure: \(K = 19 \) generators (dimension \(\leq \frac{1}{3} \)), Error per pixel = 5.6\%.
Figure: $K = 8$ generators (dimension $\leq \frac{1}{7}$), Error per pixel $= 2.1\%$.
Figure: $K = 14$ generators (dimension $\leq \frac{1}{4}$), Error per pixel = 1.6%.
Approximation Examples (Low error)

Figure: $K = 19$ generators ($\text{dimension} \leq \frac{1}{3}$), Error per pixel $= 1.3\%$.

